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A lattice Boltzmann model for the dissolution of solid structures of arbitrary shape in multi-component
liquids is developed. To model diffusion-controlled dissolution, a multicomponent boundary condition is pre-
sented to impose a fixed concentration on an arbitrarily located boundary. The dissolution rate of the solid is
calculated based on the diffusion flow in the boundary layer. The model is validated using analytical solutions
of simple dissolution problems in a static fluid, and is applied to the dissolution of a cylinder in a laminar flow.
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Over the last two decades the lattice Boltzmann equation
�LBE� �1–9� has evolved into a useful computational method
for simulating complex flows such as multi phase �10–13�
and multi component flows �14–16�, flows through porous
media �8�, and particulate suspensions in fluid flows �17�.
Dissolution of arbitrarily-shaped solid structures in multi
component fluids is an application which can be quite hard to
tackle with conventional techniques. For this application
there is a growing interest in the lattice Boltzmann method.
Kang and co-workers �18,19� developed a lattice Boltzmann
model to simulate dissolution and precipitation in porous
media in which they use separate populations for fluid flow
and for solute transport. The assumptions made are that the
solute concentration is sufficiently low so that it does not
influence the flow and that the dissolution rate is limited by
first order reaction kinetics. Verberg and Ladd �20� simulate
diffusion-controlled dissolution using a lattice Boltzmann
scheme for the fluid flow calculations, a stochastic algorithm
to solve the solute concentration field, and calculate the evo-
lution of the solid structure from the local diffusion flux.

In the present work we use the two-fluid model for binary
mixtures proposed by Luo and Girimaji �21,22�, in which the
kinetic theory mixture model suggested by Sirovich �23� is
discretized in an a priori fashion �5–7�, yielding the follow-
ing set of lattice Boltzmann equations:
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where �� and ��, and u� and u� are the mass densities and
the flow velocities for the species � and �, defined as the
moments of the distribution functions:
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with the weight factors w� dependent on the choice of the
discrete velocity set e�.

Through the Chapman-Enskog analysis �a multiple-scale
expansion� �24� the macroscopic equations solved by the
model can be derived. This leads to the following
convection-diffusion equation for the difference in mass frac-
tion �= ���−��� / ���+���=x�−x�:

�t� + u · �� =
1

�
� · �D � � + F� �3�

with D the diffusion coefficient, related to the relaxation time
�D and the properties of the species, and F a force term
including a pressure gradient dependence and external force
contributions �22�.

In the present work a two-dimensional model is used to
study the dissolution of solid structures with an arbitrary
shape and composition in a binary fluid containing species �
and �. The solid structure is discretized using a finite volume
approach. To each calculation node a volume fraction a of
solid is assigned. Cells with no solid fraction are labeled
fluid cells, cells partially or fully solid are labeled solid cells.
The location of a boundary between a fluid node and a neigh-
boring solid node can be explained using Fig. 1. For every
direction e� the solid surface is taken to be at a fraction
� 3

2 −a� of the lattice spacing in that direction.
We assume the dissolution to be diffusion-controlled,

which means that diffusion is the rate-limiting step and the
chemical reaction rate is considered very fast compared to
diffusion. To simulate a diffusion-controlled dissolution
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mechanism two conditions have to be imposed: an equilib-
rium concentration of both species on the interface between
solid and liquid, and the dissolution of the solid according to
the diffusion flux.

The concentration boundary condition used to impose a
fixed mass fraction on the solid interface can be explained
using Fig. 2. Let rj be a fluid node with a neighboring solid
node rs. Let the velocity streaming into the wall be e�, and
the opposite velocity be e�̄. After the collision step, the popu-
lations f�

k and f �̄
k are known in the fluid nodes rj ,rj�, and rj�.

After streaming the populations f �̄
k are not known in rj and

have to be calculated from the boundary condition. If the
solid node rs is completely filled with solid, that is if a=1,
we have found that the following expression can be used to
calculate the f �̄

k populations for both components from the
known populations f�

k :

f �̄
� = 2x��f�

� + f�
� � − f�

� �4�

in which x� is the imposed equilibrium mass fraction of com-
ponent � on the solid surface. The rationale behind this

boundary condition expression can be seen by rewriting it in
the following way:

f�
� + f �̄

� = 2x��f�
� + f�

� � � 2x�wi� � 2wi��. �5�

In simple terms this means that the mass of � moving along
the directions � and �̄ is set equal to twice the mass of �
moving along �, calculated from both species populations
and the imposed mass fraction on the solid interface.

Since in general the boundary will not be located half
way, a procedure of interpolation and extrapolation has been
developed which can be explained using Fig. 2�b�. If a	1, a
fictitious node can be created half a lattice spacing from the
boundary. For this node the populations f �̄

k can be calculated
using relation �4� if the populations f�

k are known. These can
be calculated from extrapolation using the values in the
nodes rj ,rj�, and rj�. From the calculated population f �̄

k in the
fictitious node, and the populations f �̄

k known in rj� and rj�

FIG. 2. Illustration of the boundary condition. Shaded disks are
fluid nodes, with the disks �•� fluid nodes with a solid neighbor
node. Circles ��� are located in the fluid but not on grid nodes.
Square boxes indicate solid nodes.

FIG. 3. Validation of static LBE calculation with analytical
results.

FIG. 4. Validation of moving boundary condition with analytical
results.

FIG. 1. Examples of boundary locations for different solid ge-
ometries. Dashed lines �- - -� indicate velocity directions, dashes �-�
indicate location of boundary for crossing velocity direction.
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�through simple streaming�, the populations f �̄
k in rj can be

interpolated.
Once the concentration boundary condition has been im-

posed on all nodes with neighboring solid nodes, the amount
of dissolving solid can be calculated. For each solid node
surrounded by at least one fluid node, the diffusing amount
of a component can be calculated by summing the difference
in mass of that component before and after application of the
boundary condition for all fluid nodes surrounding the solid
node under study. The mass fraction a of that node can be
updated accordingly:

a�t + 1� = a�t� −
1

���
S − ��

L��nb

�f �̄
� − f�

�� �6�

in which ��
S and ��

L are the density concentrations of compo-
nent � in the solid and in the liquid in equilibrium with the
solid, respectively. The summation is made over all neigh-
boring fluid nodes.

The proposed boundary condition has been tested for the
static problem of diffusion into a semi-infinite fluid. This
amounts to solving the diffusion equation:

�tc�x,t� = D�2c�x,t� �7�

with initial and boundary conditions:

c�x,0� = c0, c�0,t� = c1, c�
,t� = c0 �8�

in which c0 and c1 are the initial concentration and the con-
centration at the boundary, respectively.

This can be solved analytically yielding the following
concentration profile �25�:

� = 1 − erf	 x

4Dt

� �9�

with �= �c−c0� / �c1−c0� the reduced concentration. In Fig. 3
the result of the LBE calculation is compared with the ana-
lytical result. The agreement is satisfactory.

A flat solid interface moving by diffusion is one of the
few moving boundary problems with an analytical solution.

FIG. 5. Simulated concentration profiles and velocity fields for a cylinder with and without flow. �a� and �c� show the resulting structure
with convection after two different times. Contours indicate the concentration profile, arrows the flow field. �b� and �d� show the resulting
structure without convection after two different times. Contours indicate the concentration profile, arrows indicate the diffusive flux field.
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The boundary condition at x=0 in Eq. �8� has to be replaced
with the Stefan condition

�D � c�x=X = �1 − c1�
dX

dt
�10�

with X�t� the location of the interface at a given time t. The
solution for X is given by �26�

X0 − X = L
Dt �11�

with X0 the initial position of the interface, and L a constant
given by

C1

1 − C1
=


�

2
L exp	L2

4
��1 + erf	L

2
�� . �12�

Figure 4 shows a comparison between the LBE result and the
analytical solution.

To show the potentiality of the presented model the dis-
solution of a cylindrical solid component with and without
convection in the fluid has been simulated. On a domain of
100150 nodes, a solid cylinder with a diameter of 26 lat-
tice units �l.u.� and a composition of 0.1� and 0.9� �dimen-
sionless lattice density� is initialized. The cylinder is in equi-
librium with a fluid of 60% �. The initial composition of the
fluid is 50% �. In one case the fluid is static. On the domain
boundaries zero velocity and zero concentration gradient is
imposed. In the other case a fluid with a composition of 50%
� is injected at the left-hand side of the domain. A pressure
drop of 0.01p0 is applied over the domain, with p0 the pres-
sure related to dimensionless density 1. At the right-hand
side a no-diffusion condition is imposed. On the upper and
lower wall zero velocity and zero flux is imposed. The vis-
cosity and diffusion coefficient are chosen so that a Schmidt
number Sc=� /D=30 is obtained. The Reynolds number for

flow over the cylinder is about 0.5 at the start of the disso-
lution. Figure 5 shows the evolution of the density of � for
both cases. The velocity of the fluid or the diffusion flux of �
is indicated by the arrows.

Figure 5 clearly shows the off-grid nature of the boundary
condition with solid fractions and extrapolation �i.e., the
boundary can be arbitrarily located between grid nodes�.
Since the partially solid cells have the composition of the
solid �so a concentration of 90% �� in these figures, the 60%
� contour shows the discretization of the solid by the lattice.
However, the other contours are smooth and in the case with-
out convection, they behave like the solid is a perfect cylin-
der, as can be noticed in Figs. 5�b�–5�d�. In the case with
convection �Figs. 5�a�–5�c��, the solid dissolves faster on the
front and the sides than on the back, and a more “aerody-
namic” shape evolves. The remaining amount of solid is
smaller than in the case without convection.

A lattice Boltzmann model for dissolution of arbitrarily
shaped solids in a multi-component liquid has been pre-
sented. The model has been validated for problems with ana-
lytical solutions. The use of the two-fluid model removes the
low-concentration condition often used in previous work.
The model has been applied to more complex problems such
as the dissolution of a cylinder under convection. Future re-
search may include analytical proof of the boundary condi-
tion, inclusion of temperature dependence, and extending the
fluid model to multiple phases.
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